28 research outputs found

    Maize response to macronutrients and potential for profitability in sub-Saharan Africa

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10705-015-9717-2Sub-Saharan Africa (SSA) is plagued by low productivity and little research is available on the attainable responses and profitability to applied nutrients under variable environments. The objective of this study was to determine the attainable maize grain response to and potential of profitability of N, P and K application in SSA using boundary line approaches. Data from experiments conducted in SSA under AfSIS project (2009–2012) and from FAO trials database (1969–1996) in 15 countries and constituting over 375 different experimental locations and 6600 data points are used. Both response to fertilizer and value cost ratio (VCR) are highly variable and no more than 61 % cases for N, 43 % for P and 25 % for K attain VCR of 2 or more. Also, based on the recent AfSIS data, VCR exceeds 1 in just 67 % (N), 57 % (P) and 40 % (K) of the cases, even when best management practices are applied on a research farm, and interest rates are zero. Chances for profitability are highest when soil organic carbon is 1–2 % and control maize grain yield is 1–3 t ha−1 but also depends on relatively static soil properties (primarily texture and mineralogy) that are not under farmer control. We conclude that return on investment of macronutrient fertilizer is highly variable and can be substantially increased by helping farmers decide where to apply the fertilizers. Consequently, farmers need access to information on factors influencing economic returns of fertilizer use in order to make the right decisions

    Understanding system innovation adoption: A comparative analysis of integrated soil fertility management uptake in Tamale (Ghana) and Kakamega (Kenya)

    No full text
    Sustainable intensification of African farming systems has been high on the agenda of research and development programs for decades. System innovations such as integrated soil fertility management (ISFM) and conservation agriculture have been proposed to tackle the complex challenges farmers face. In this study, we assess how different factors at the plot, farm and institutional level can influence the adoption of ISFM. We employed a stratified sampling approach to randomly select 285 and 300 farmers in Tamale, northern Ghana and Kakamega County, western Kenya, respectively. These two locations were selected to understand the underlying reasons for their divergent adoption levels. Ordinal regression models were used to identify determinants of adoption. In Tamale, adoption rates of ISFM are much lower than in Kakamega. Only 3% of the farmers fully adopted the recommended practices compared with 36% in Kakamega. The low availability of improved seeds is a major reason for the lower uptake of the complete ISFM paradigm in Tamale. The econometric analysis revealed that plot level variables such as soil carbon, soil texture, slope and plot area had a significant effect on the number of adopted ISFM components at both locations. Moreover, family labor availability is also an important factor. Other farm and household characteristics, such as off-farm occupation, livestock ownership, and membership in associations, matter for Kakamega only. Key policy recommendations include promotion of locally available organic resources and improved access to improved seeds in Tamale
    corecore